
Extended Fourier analysis of signals

Extended Fourier analysis of signals

A Fourier transform is a powerful tool of signal analysis and representation of a time function

x(t) (hereinafter referred to as the signal) in the frequency domain
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The orthogonality property of the Fourier transform
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providing a basis for the signal selective frequency analysis, where )( 0ωωδ − is the Dirac

delta function. Unfortunately, the Fourier transform calculation according to (1.1) requiring

knowledge of the signal x(t) as well as performing of integration operation in infinite time

interval. Therefore, for practical evaluation of (1.1) numerically, the signal observation period

and the interval of integration is always limited by some finite value Θ, -Θ/2≤t≤Θ/2. The same

applies to the Fourier analysis of the signal x(t) sampled versions: nonuniformly sampled signal

x(tk) or uniformly sampled signal x(kT), k= -∞,…,-1,0,1,…,+∞. Only a finite length sequence

x(tk) or x(kT), k=0,1,2,…,K-1, are subject of Fourier analysis, where K is a discrete sequence

length, T is sampling period and the signal observation period Θ=tK-1-t0 or Θ=KT. To satisfy the

Nyquist limit, uniform sampling of continuous time signal should be performed with the

sampling period T≤π/Ω, where Ω is upper cyclic frequency of signal x(t). Although nonuniform

sampling has no such strict limitation on the mean sampling period Ts=Θ/K, the following

analysis we suppose that both sequences, x(tk) and x(kT), are derived from the band-limited in Ω
signal x(t). Let write the basic expressions of the classical and the proposed extended Fourier

analysis of continuous time signal x(t) and its sampled versions x(tk) and x(kT).

Basic expressions of classical Fourier analysis

The classical Fourier analysis dealing with the following finite time Fourier transforms:
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where (3.4) is the inverse Fourier transform obtained from (1.2) for band-limited in Ω signal.

Transforms (3.2 and 3.3) are known as Discrete Time Fourier Transforms (DTFT) of

nonuniformly and uniformly sampled signals. The signal amplitude spectrum is the Fourier
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transforms (3.1-3.3) results, divided by the observation period Θ,
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The frequency resolution of the classical Fourier analysis is inversely proportional to the signal

observation period  Θ.

Obviously, one can get the formula (3.1) by truncation of infinite integration limits in (1.1) and

the DTFT (3.2) and (3.3) as result of replacement of infinite sums by finite ones. This mean, the

classical Fourier analysis supposed that the signal outside Θ is zeros. In other words, the Fourier

transform calculation by formulas (3.1-3.3) is well justified if applied to time-limited within Θ
signals. On the other hand, a band-limited in Ω signal can not be also time-limited and obviously

have nonzero values outside Θ. Generally, the Fourier analysis results obtained by using the

exponential basis tje ω , ktj
e

ω−  and kTje ω−  tend to the Fourier transform (1.1), if Θ→∞, while in

any finite Θ there may exist another transform basis functions providing a more accurate

estimation of (1.1).

Basic expressions of extended Fourier analysis 

The idea of extended Fourier analysis is finding the transform basis functions, applicable for a

band-limited signals registered in finite time interval Θ and providing the results as close as

possible to the Fourier transform (1.1) defined in infinite time interval. The formulas for

proposed extended Fourier analysis could be written as
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where, in general, the transform basis α(ω,t), α(ω,tk) and α(ω,kT) are not equal to the classical

ones (3.1-3.3). Note that the inverse Fourier transform (5.4) still holds the exponential basis .tje ω

To ensure that the transforms (5.1-5.3) results will be close to the signal x(t) Fourier transform

(1.1) results, the following minimum least square expression will be composed and solved

min)()(
2

→− ωω αFF . (6)

Unfortunately, as already stated above, the calculation of F(ω) for a band-limited signals can not

be performed directly. So, in order to compose (6), we should find an adequate substitution. Let

remember, that a complex exponent (known as an analytic signal), at cyclic frequency ω0 and

with a complex amplitude S(ω0), is defined in infinite time interval
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tj
,)(),( 0

00
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The Fourier transform of an analytic signal can be expressed by the Dirac delta function (2)
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Now, let use (7) as a signal model with known amplitude spectrum S(ω0) for frequencies in
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range -Ω≤ω0≤Ω and, in the minimum least square expression (6), substitute F(ω) by the signal

model Fourier transform (8) and the signals x(t), x(tk) and x(kT) in (5.1-5.3) by the signal models

(7), correspondingly. Finally, the minimum least square error estimators for all the three signal

cases get the following form
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The solution of (9.1-9.3) for a definite signal model (7) provide the basis functions α(ω,t),

α(ω,tk) and α(ω,kT) for extended Fourier transforms (5.1-5.3). To control how close the selected

signal model amplitudes S(ω0) are to the signals x(t), x(tk) and x(kT) amplitude spectrum, we will

find the formulas for estimate amplitude spectrum Sα(ω) in the extended Fourier basis α(ω,t),

α(ω,tk) and α(ω,kT). The formula (8) is showing the connection between the signal model

Fourier transform and its amplitude spectrum S(ω0). Amplitude spectrum  Sα(ω) are calculated as

transforms (5.1-5.3) divided by estimation of )(2 ωπδ  in extended Fourier basis, obtained from

integrands of ∆ estimators (9.1-9.3) for ω0=ω,
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Values of the denominator in formulas (10.1-10.3) are in inverse ratio to the frequency resolution

of the extended Fourier transform. For example, after substituting exponential basis
tje=t ωωα −),(  in (10.1), the denominator becomes equal to Θ as in formula (4) for the classical

Fourier analysis. To establish relationships between classical and extended Fourier analysis, let

consider a special case of ∆ estimators (9.1-9.3) for the signal model having a rectangular form

of amplitude spectrum, S(ω0)=1 for -Ω≤ω0≤Ω and zeros outside.

Extended Fourier analysis: a particular solution

The minimum least square error estimators (9.1-9.3) for the signal model S(ω0)=1, -Ω≤ω0≤Ω
and zeros outside, reduces to
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The solution of (11.1) for continuous time signal x(t) is found as a partial derivation
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Step by step solution of (12) is given in [1] and [5]. Finally, the basis functions α(ω,t) are found

by applying a specific functions system - a prolate spheroidal wave functions ψk(t), k=0,1,2,...

and are written as series expansion
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The extended Fourier Transform of continuous time signal x(t) are given by
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The extended Fourier transform in accordance with (14.1) requesting a calculations of infinite

sums, this mean, an infinite quantity of mathematical operations, therefore it's impossible for real

world applications. Theoretically, the value of denominator 
2

0

)(ωBk

K

k

∑
=

in amplitude spectrum

formula (14.3) tends to infinite for K→∞, and the extended Fourier transform (14.1) provide a

supper-resolution - an ability to determine the Fourier transform for the sum of complex

exponents (sinusoids), if frequencies of them differ by arbitrary small finite value.

The detailed solution steps for the minimum least square error estimators (11.2) and (11.3) are

given in articles [2] and [3]. Similarly to (11.1), finding of the partial derivations
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The solution of (15) expressed in matrix form is

ωω ERA
1−= , (16)

where Aω (Kx1) and Eω (Kx1) are the extended Fourier and the exponential basis functions. The

formulas of the Extended Discrete Time Fourier Transform (EDTFT) for signal model S(ω0)=1,

-Ω≤ω0≤Ω, are derived by substituting of transform basis (16) into expressions (5) and (10)
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where ( )−1 denote the inverse matrix and ( )H denotes Hermitian transpose. The matrices for

nonuniformly sampled signal case are composed as follows
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Uniformly sampled signal x(kT) can be considered as a special case of nonuniform sampling

at time moments tk=kT, k=0,1,2,…,K-1. Then the matrices elements in (17.1-17.3) are

X (1xK) - )(kTx , Eω (Kx1) - lTje ω− , R (KxK) -
)(
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In particular, if uniform sampling of signal x(kT) is done with Nyquist rate T=π/Ω, then the

matrix R becomes a unit matrix and formula (17.1) coincide with classical DTFT (3.3). In case,

mean sampling period is less then it demands by Nyquist criteria for uniformly sampled signal,

the EDTFT approach can provide a high frequency resolution and improved spectral estimation

quality. Unfortunate an achievement of such results is limited by finite precision in the

mathematical calculations and by restrictions on frequency range in the process of signal

sampling. Theoretical value of denominator in (17.3) KH =−
ωω ERE

1
and the frequency

resolution should increase proportionally to the number of samples in the signal observation

period Θ. In the border-case, if number of samples within Θ increasing infinitely (K→∞) and the

discrete time signal tends to the continuous time signal x(t), the EDTFT (17.1) gives the same

results as (14.1).

Extended DTFT

Now, let consider the solution of the minimum least square error estimators (9.2) and (9.3) for

arbitrary selected signal model S(ω0) (see [2], [3] and [5]). The derivation formulas for both

estimators are similar to ones given in previous section. For example, a partial derivation of

(9.2) by basis functions 1,...,2,1,0for   ,0
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where (*) denote the complex conjugate value. Equation (16) can be written as
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The filtering feature of Dirac delta function )()()( 00 xfdxxxxf =−∫
∞
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δ  applied to the right part

of (17) gives the final form of the system of linear equations
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where 
2

)(ωS  is the signal model power spectrum at ω0=ω. Note that (18.2) is written for

uniformly sampled signal x(kT) and can be derived from (9.3) in a similar way. The EDTFT

basis functions Aω  (Kx1) - α(ω,tk) or α(ω,kT) are found as a solution of (18)

ωω ω ERA
12
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Substituting of transform basis (19) into expressions (5) and (10), yields the formulas for

calculation of the EDTFT:
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The elements of matrices R and Et in the formulas (19, 20.1-20.3) are expressed by integrals
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for nonuniformly sampled signal X (1xK) – x(tk), and
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for case of uniformly sampled signal X (1xK) – x(kT), where k,l=0,1,2,…,K-1. 

The frequency resolution of the EDTFT is in inverse ration to ωωω ERE
12

)( −HS and varied in

the frequency range -Ω≤ω≤Ω.

The EDTFT, where the signal model amplitude spectrum S(ω0) tends to the signal amplitude

spectrum Sα(ω), can be found by the following iterative algorithm:

Iteration 1. Calculate )()1( ωaS  (17.3) applying default signal model S(ω0)=1.

Iteration 2. Calculate )()2( ωaS  (20.3) by using the signal model )( 0

)1( ωaS .

Iteration 3. Calculate )()3( ωaS  (20.3) by using the signal model )( 0

)2( ωaS .

...

Iteration i. Calculate )()( ωi

aS  (20.3) by using the signal model )( 0

)1( ω−i
aS .

Iterations are repeated until )()( )1()( ωω −≈ i

a

i

a SS . The EDTFT output )()( ωI

aF (20.1) is

calculated for the last performed iteration I. The signal model spectrum )()( 0

)(

0 ωω I

aSS =  and

the matrix R represent a signal autocorrelation matrix. By default the signal model S(ω0)=1 is

used as input of the EDTFT algorithm. At the same time, an additional information about the

signal to be analyzed can be used to create a more realistic signal model for the EDTFT input.

This will reduce the number of iterations needed to reach the stopping iteration criteria. 
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Extended DFT algorithm

The EDTFT considered in previous sections is a function of continuous frequency (-Ω≤ω≤Ω),

while described below the Extended DFT (EDFT) algorithm calculated the EDTFT on a discrete

frequency set -Ω≤2πfn<Ω, n=0,1,2,…,N-1. The number of frequency points N should be selected

sufficiently great to substitute the integrals in expressions (20.1, 20.2) by the finite sums - N≥K,

where K is the length of nonuniformly or uniformly sampled sequence X (1xK). The EDFT can

be expressed by the following iterative algorithm

Hi

N
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where the iteration number i=1,2,3,…I. The diagonal weight matrix W(i) (NxN) for the first

iteration is a unit matrix, W(1)=I, and for the next iterations are derived from the amplitude

spectrum 
2)()1( || ii diag SW =+
. The matrix E (KxN) has elements kntfj

e
π2− . The )( 1ERE −Hdiag

(1xN) means extracting the main diagonal elements from quadratic matrix. The EDFT output F

(1xN) and S (1xN) are calculated from the results of the last performed iteration I. Reconstructed

sequence Xα (1xN) - xα(tm), m=0,1,2,…,N-1, is obtained by applying an inverse DFT of (21.2)

t
N
FEX

1
=α , (22)

where Et (NxN) - mntfj
e

π2 . Note that xα(tm)=x(tk), if tm=tk. For N>K, the reconstructed by the

formula (22) sequence is the original sequence plus forward and backward extrapolation of X to

length N and/or interpolation if there are gaps inside of X. The maximum frequency resolution of

the EDFT algorithm is limited by the length N of frequency set, not by the length K of sequence

X as in application of classical DFT. This mean, the EDFT is able to increase the frequency

resolution N/K times in comparison with classical DFT. At the same time, there is a restriction

on the frequency resolution NKsum ii =)/( )()( SF , satisfied by each iteration, and in order to

achieve a high resolution on some frequencies, the EDFT should decrease the resolution on other

frequencies. In a border-case N=K, the EDFT output do not depend on weight matrix W and can

be calculated in a non-iterative way (as result of the first EDFT iteration).

Computer simulations

The computer modeling results are presented for the test signal consisting of three non-

overlapping components symbolized in Fig. 1. The sequences x(kT) and x(tk) (Ts=T) length K=64

are derived by simulating 8-bit ADC (analog-to-digital converter) of test signal x(t).
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1 2 3

Fig.1 Spectrum of composite test signal x(t): 

1 - a band-limited noise, 2 - the rectangular impulse, 3 - complex exponent at ω/Ω=0.7.
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Fig.2 The power spectrum estimation for sampled test signal:

 a,b - DFT, c,d - EDFT (a,c - uniform, b,d - nonuniform sampling, Ts=T).

Fig.2 show the results of EDFT 10th iteration in comparison with classical DFT (formulas 3.2

and 3.3). EDFT output (c,d) illustrate, that the proposed algorithm providing a high-frequency

resolution, is able to estimate a composite signal spectrum, and is working equally well for

uniformly and nonuniformly sampled signal.

Fig.3 The spectrum estimation of Marple&Kay test signal:

a - true spectra, b - Burg method, c - modified covariance method,  d - EDFT.
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Fig.3 allow to compare the EDFT 10th iteration output with well-known Burg and modified

covariance methods (model order = 16) [2]. Fig.3a illustrates the true spectrum of the test signal

used by Marple&Kay - 64-point real sample sequence from a process consisting of three

sinusoids and a colored noise (see S.M. Kay, S.L. Marple, Spectrum analysis - a modern

perspective, Proc. IEEE, No.11, Vol.69, 1981.). Note that the EDFT correctly estimate amplitude

and phase spectrum of the test signal. Thus, application of the formula (22), allow to reconstruct

not only initial test signal, but also extrapolate it outside the given time interval. Comprehensive

computer simulation results of proposed EDFT algorithm and comparison with other spectral

analysis methods are given in [5].

EDFT algorithm in MATLAB code

The program NEDFT.m in MATLAB code is created to demonstrate the EDFT algorithm

capabilities, which are described in previous sections. The program can be run for

nonuniformly or uniformly sampled signals and for arbitrary selected frequency set fn (see

NEDFT.m program help for details). From the calculations complexity viewpoint, it is

reasonable to select the frequencies on the same grid as used by the Fast Fourier Transform

(FFT) algorithm. The program EDFT.m is designed as a faster realization of the EDFT

algorithm [4]. This program is applicable for uniformly sampled signals and for signals with

missing samples or data segments (gaps) inside of the input sequence (see EDFT.m program

help for more details). The first version of the EDFT (file GDFT.m) was submitted on

10/7/1997 as MATLAB 4.1 code. The renewed EDFT version submitted on 8/5/2006 and

available online http://www.mathworks.com/matlabcentral/fileexchange/11020-extended-dft.

Note that programs have not been tested under latest MATLAB versions, and therefore have a

lot of space for performance improvements.
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