(15.06.2011 07:07 )TSchAC schrieb: Wenn mich meine mathematischen Kenntnisse nicht völlig im Stich lassen, entspricht der Erwartungswert dem physikalischen Schwerpunkt der Fläche unter der Funktion.
Richtig, und der Schwerpunkt würde sich einfach zu
Xs = Summe(Xi*Yi)/Summe(Yi)
berechnen - nichts einfacher als das.
Aber wurde denn das VI für Fittung Gaußsche Glockenkurve überhaupt verwendet? Das funktioniert doch auch mit verrauschten Werten - dazu sind Fitting-Funktionen doch da, um im Rauschen das Wesentliche zu erkennen.
Und was hat es denn mit den "Schwankungen" auf sich? Wenn man einen neuen Datensatz nimmt, hat man doch auch ein anderes Ergebnis, das ist doch völlig normal und würde bei der Schwerpunktsberechnung genau so auftreten.
Edit: Zum Thema "Schwerpunkt einer Gauß-Kurve"
Die hat man ja nicht - Berechnungen kann man nur anstellen mit dem was man hat, und hier ist das ein Datensatz von Punkten.
Außerdem: Das haben alle symmetrischen Funktionen so an sich - der Schwerpunkt ist die Symmetrieachse. Will sagen: Wenn man die Gaußsche Glockenkurve als analytische Formel hätte, brauchte man keine Schwerpunktberechnung - der Schwerpunkt ist der X-Offset in der Formel.