' schrieb:Ich meine, da hatten wir mal einen Beitrag von Lucki, bin mir aber nicht sicher...
War mir auch nicht sicher, und deshalb habe ich mal nach "Lucki" und "Polygon" - nein, nicht gegooglt - hier im Forum gesucht. Fehlanzeige. Es ging damals um die Boolsche Entscheidung, ob ein gegebener Punkt P sich innerhalb oder außerhalb
eines geschlossenen Polygons befindet Das war
hier
Aber trotzdem habe ich mich schon damit herumgeschlagen, und es war ganz einfach. Wenn man über einen Funktionsverlauf integriert, und die Funktion läuft wieder zurück zum Ausganspunkt, dann sind diese Integralanteile negativ. Was in der Endsumme - also dem Integral - übrig bleibt, ist genau die eingeschlossene Fläche.
Und die Trapezformel zu verwenden ist hier das Einzig richtige. Denn die Verbindungen zwischen zwie Polygonpunkten sind hier Geraden, die Trapezformel ist hier keine Interpolation, sondern gilt exakt. Also: Das Einzige, was man machen muß, ist, im Funktionsmenü die Integralformel herauszusuchen, die mit unterschiedlichem dx funktioniert.